Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cancer Res Commun ; 4(3): 786-795, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38407352

RESUMO

While tyrosine kinase inhibitors (TKI) have shown remarkable efficacy in anaplastic lymphoma kinase (ALK) fusion-positive advanced non-small cell lung cancer (NSCLC), clinical outcomes vary and acquired resistance remains a significant challenge. We conducted a retrospective study of patients with ALK-positive NSCLC who had clinico-genomic data independently collected from two academic institutions (n = 309). This was paired with a large-scale genomic cohort of patients with ALK-positive NSCLC who underwent liquid biopsies (n = 1,118). Somatic co-mutations in TP53 and loss-of-function alterations in CDKN2A/B were most commonly identified (24.1% and 22.5%, respectively in the clinical cohort), each of which was independently associated with inferior overall survival (HR: 2.58; 95% confidence interval, CI: 1.62-4.09 and HR: 1.93; 95% CI: 1.17-3.17, respectively). Tumors harboring EML4-ALK variant 3 (v3) were not associated with specific co-alterations but were more likely to develop ALK resistance mutations, particularly G1202R and I1171N (OR: 4.11; P < 0.001 and OR: 2.94; P = 0.026, respectively), and had inferior progression-free survival on first-line TKI (HR: 1.52; 95% CI: 1.03-2.25). Non-v3 tumors were associated with L1196M resistance mutation (OR: 4.63; P < 0.001). EML4-ALK v3 and somatic co-alterations in TP53 and CDKN2A/B are associated with inferior clinical outcomes. v3 status is also associated with specific patterns of clinically important ALK resistance mutations. These tumor-intrinsic features may inform rational selection and optimization of first-line and consolidative therapy. SIGNIFICANCE: In a large-scale, contemporary cohort of patients with advanced ALK-positive NSCLC, we evaluated molecular characteristics and their impact on acquired resistance mutations and clinical outcomes. Our findings that certain ALK variants and co-mutations are associated with differential survival and specific TKI-relevant resistance patterns highlight potential molecular underpinnings of the heterogenous response to ALK TKIs and nominate biomarkers that may inform patient selection for first-line and consolidative therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/genética
2.
Lung Cancer ; 186: 107383, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813016

RESUMO

OBJECTIVES: MET amplification is a common mechanism of resistance to second- and third-generation anaplastic lymphoma kinase (ALK) inhibitors. In case series of MET-amplified ALK-rearranged (ALK + ) lung cancer, durability of responses to combinations targeting ALK and MET is variable, suggesting heterogeneity across tumors. However, little is known about the molecular composition of this subset of ALK-rearranged (ALK + ) NSCLC. MATERIALS AND METHODS: We queried tissue and plasma databases to compile a group of > 50 specimens with ALK rearrangements and concurrent MET amplification. Fluorescence in-situ hybridization (FISH) and next-generation sequencing (NGS) were utilized to quantify the range of MET copies and describe the global molecular landscape of co-altered genes. RESULTS: By FISH, high-level amplification (overall MET/centromere 7 probe ratio ≥ 5) was detected in 75 % of MET-amplified ALK + NSCLC tissue specimens. Intralesional heterogeneity of MET copies was observed, with high-level amplification identified even in cells from tumors with overall low-level MET amplification. Analysis of 48 MET-amplified ALK + NSCLC plasma specimens suggested that high-level amplification is rarely (17 %) detected in plasma. In both tissue and plasma, EML4-ALK variant 1 was the predominant variant (51 %) identified in MET-amplified specimens. ALK kinase domain mutations were only present in a minority of MET-amplified ALK + NSCLCs. MET-amplified ALK + NSCLC plasma specimens were enriched for TP53 mutations (81 % vs 45 %, p = 0.002), EGFR amplification (17 % vs 4 %, p < 0.001), and MYC amplification (21 % vs 3 %, p < 0.001) compared to ALK + NSCLC specimens lacking MET amplification. CONCLUSIONS: MET-amplified, ALK + NSCLC often presents with high-level and heterogeneous amplification in tissue, seldom overlaps with ALK mutations, and frequently co-occurs with alterations associated with aggressive tumor biology.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
JCO Precis Oncol ; 7: e2300118, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37769226

RESUMO

PURPOSE: Immune checkpoint inhibitors are approved for advanced solid tumors with microsatellite instability-high (MSI-H). Although several technologies can assess MSI-H status, detection and outcomes with circulating tumor DNA (ctDNA)-detected MSI-H are lacking. As such, we examined pan-cancer MSI-H prevalence across 21 cancers and outcomes after ctDNA-detected MSI-H. METHODS: Patients with advanced cancer who had ctDNA testing (Guardant360) from October 1, 2018, to June 30, 2022, were retrospectively assessed for prevalence. GuardantINFORM, which includes anonymized genomic and structured payer claims data, was queried to assess outcomes. Patients who initiated new treatment within 90 days of MSI-H detection were sorted into immunotherapy included in treatment (IO) or no immunotherapy included (non-IO) groups. Real-world time to treatment discontinuation (rwTTD) and real-world time to next treatment (rwTTNT) were assessed in months as proxies of progression-free survival (PFS); real-world overall survival (rwOS) was assessed in months. Cox regression tests analyzed differences. Colorectal cancer, non-small-cell lung cancer (NSCLC), prostate cancer, gastroesophageal cancer, and uterine cancer (UC) were assessed independently; all other cancers were grouped. RESULTS: In total, 1.4% of 171,881 patients had MSI-H detected. Of 770 patients with outcomes available, rwTTD and rwTTNT were significantly longer for patients who received IO compared with non-IO for all cancers (P ≤ .05; hazard ratio [HR] range, 0.31-0.52 and 0.25-0.54, respectively) except NSCLC. rwOS had limited follow-up for all cohorts except UC (IO 39 v non-IO 23 months; HR, 0.18; P = .004); however, there was a consistent trend toward prolonged OS in IO-treated patients. CONCLUSION: These data support use of a well-validated ctDNA assay to detect MSI-H across solid tumors and suggest prolonged PFS in patients treated with IO-containing regimens after detection. Tumor-agnostic, ctDNA-based MSI testing may be reliable for rapid decision making.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Masculino , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Instabilidade de Microssatélites , DNA Tumoral Circulante/genética , Estudos Retrospectivos , Prevalência , Neoplasias Pulmonares/tratamento farmacológico
4.
JTO Clin Res Rep ; 4(8): 100534, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533439

RESUMO

Introduction: MET amplification is a potentially actionable resistance mechanism in ALK-rearranged (ALK+) lung cancer. Studies describing treatment outcomes of this molecular subgroup are lacking. Methods: We assembled a cohort of patients with ALK+ lung cancer and acquired MET amplification (identified by tissue or plasma) who received regimens targeting both ALK and MET. Efficacy and safety were assessed using the Response Evaluation Criteria in Solid Tumors version 1.1 and Common Terminology Criteria for Adverse Events version 4.03, respectively. Results: A total of 12 patients were included in the series. MET amplification was detected after a median of 1.5 (range 1-5) lines of therapy. Four distinct regimens were implemented to address MET amplification: crizotinib (n = 2), lorlatinib plus crizotinib (n = 6), alectinib plus capmatinib (n = 3), and alectinib plus crizotinib (n = 1). Partial responses were observed in five (42%) of 12 patients, including patients who received crizotinib (n = one of two), lorlatinib plus crizotinib (n = three of six), and alectinib plus capmatinib (n = one of three). Primary progression was observed in four patients (33%). Grades 1 to 2 peripheral edema, occurring in seven (58%) patients, was found with both crizotinib and capmatinib. One patient required dose reduction of capmatinib plus alectinib for persistent grade 2 edema. Across the regimens, one patient discontinued therapy for toxicity, specifically neurocognitive toxicity from lorlatinib plus crizotinib. At progression on ALK+ MET therapy, potential resistance mechanisms included MET copy number changes and ALK kinase domain mutations. Conclusions: Combined ALK and MET inhibition is associated with moderate antitumor activity in patients with ALK+ NSCLC with concurrent MET amplification. Prospective studies are indicated to confirm activity and identify individuals most likely to benefit from the treatment.

5.
Clin Cancer Res ; 29(24): 5207-5216, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37486343

RESUMO

PURPOSE: PARP inhibitors (PARPi) provide an effective maintenance option for patients with BRCA- or PALB2-mutated pancreatic cancer. However, mechanisms of PARPi resistance and optimal post-PARPi therapeutic strategies are poorly characterized. EXPERIMENTAL DESIGN: We collected paired cell-free DNA samples and post-PARPi clinical data on 42 patients with advanced, platinum-sensitive pancreatic cancer who were treated with maintenance rucaparib on NCT03140670, of whom 32 developed progressive disease. RESULTS: Peripherally detected, acquired BRCA or PALB2 reversion variants were uncommon (5/30; 16.6%) in patients who progressed on rucaparib. Reversions were significantly associated with rapid resistance to PARPi treatment (median PFS, 3.7 vs. 12.5 months; P = 0.001) and poor overall survival (median OS, 6.2 vs. 23.0 months; P < 0.0001). All patients with reversions received rechallenge with platinum-based chemotherapy following PARPi progression and experienced faster progression on this therapy than those without reversion variants (real-world time-to-treatment discontinuation, 2.4 vs. 5.8 months; P = 0.004). Of the patients who progressed on PARPi and received further chemotherapy, the OS from initiation of second-line therapy was significantly lower in those with reversion variants than in those without (5.5 vs. 12.0 months, P = 0.002). Finally, high levels of tumor shedding were independently associated with poor outcomes in patients who received rucaparib. CONCLUSIONS: Acquired reversion variants were uncommon but detrimental in a population of patients with advanced BRCA- or PALB2-related pancreatic ductal adenocarcinoma who received maintenance rucaparib. Reversion variants led to rapid progression on PARPi, rapid failure of subsequent platinum-based treatment, and poor OS of patients. The identification of such variants in the blood may have both predictive and prognostic value. See related commentary by Tsang and Gallinger, p. 5005.


Assuntos
Neoplasias Ovarianas , Neoplasias Pancreáticas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Proteína BRCA2/genética , Prognóstico , Indóis , Inibidores de Poli(ADP-Ribose) Polimerases , Platina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteína BRCA1/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética
6.
Ther Adv Med Oncol ; 15: 17588359231152844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743521

RESUMO

Tissue-agnostic indications for targeted therapies have expanded options for patients with advanced solid tumors. The Food and Drug Administration approvals of the programmed death-ligand 1 inhibitor pembrolizumab and the TRK inhibitors larotrectinib and entrectinib provide rationale for next-generation sequencing (NGS) in effectively all advanced solid tumor patients given potential for clinical responses even in otherwise refractory disease. As proof of concept, this case report describes a 64-year-old woman with triple-negative breast cancer refractory to multiple lines of therapy, found to have a rare mutation on NGS which led to targeted therapy with meaningful response. She initially presented with metastatic recurrence 5 years after treatment for a localized breast cancer, with rapid progression through four lines of therapy in the metastatic setting, including immunotherapy, antibody-drug conjugate-based therapy, and chemotherapy. Germline genetic testing was normal. Ultimately, NGS evaluation of cell-free DNA via an 83-gene assay (Guardant Health, Inc.) identified two NTRK3 fusions: an ETV6-NTRK3 fusion associated with the rare secretory breast carcinoma, and CRTC3-NTRK3, a novel fusion partner not previously described in breast cancer. Liver biopsy was sent for whole exome sequencing and RNA-seq analysis of tissue (BostonGene, Inc., Boston, MA, USA), which provided orthogonal confirmation of both the ETV6-NTRK3 and CRTC3-NTRK3 fusions. She was started on the TRK inhibitor larotrectinib with a marked clinical and radiographic response after only 2 months of therapy. The patient granted verbal consent to share her clinical story, images, and data in this case report. This case demonstrates the significant potential benefits of NGS testing in advanced cancer and the lessons we may learn from individual patient experiences.

7.
Front Oncol ; 12: 966534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185208

RESUMO

BRCA1-mutated prostate cancer has been shown to be less responsive to poly (ADP-ribose) polymerase (PARP) inhibitors as compared to BRCA2-mutated prostate cancer. The reason for this differential response is not clear. We hypothesized this differential sensitivity to PARP inhibitors may be explained by distinct genomic landscapes of BRCA1 versus BRCA2 co-segregating genes. In a large dataset of 7,707 men with advanced prostate cancer undergoing comprehensive genomic profiling (CGP) of cell-free DNA (cfDNA), 614 men harbored BRCA1 and/or BRCA2 alterations. Differences in the genomic landscape of co-segregating genes was investigated by Fisher's exact test and probabilistic graphical models (PGMs). Results demonstrated that BRCA1 was significantly associated with six other genes, while BRCA2 was not significantly associated with any gene. These findings suggest BRCA2 may be the main driver mutation, while BRCA1 mutations tend to co-segregate with mutations in other molecular pathways contributing to prostate cancer progression. These hypothesis-generating data may explain the differential response to PARP inhibition and guide towards the development of combinatorial drug regimens in those with BRCA1 mutation.

8.
Cancers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077815

RESUMO

ARID1A abnormalities disturb transcriptional processes regulated by chromatin remodeling and correlate with immunotherapy responsiveness. We report the first blood-based cell-free DNA (cfDNA) next-generation sequencing (NGS) ARID1A analysis. From November 2016 through August 2019, 71,301 patients with advanced solid tumors underwent clinical blood-derived cfDNA testing. Of these patients, 62,851 (88%) had ≥1 cfDNA alteration, and 3137 (of the 62,851) (5%) had ≥1 deleterious ARID1A alteration (a frequency similar to the ~6% generally reported in tissue NGS), suggesting this non-invasive test's value in interrogating ARID1A. ARID1A cfDNA alterations were most frequent in endometrial cancer, 21.3% of patients; bladder cancer, 12.9%; gastric cancer, 11%; cholangiocarcinoma, 10.9%; and hepatocellular carcinoma, 10.6%. Blood samples with a functional ARID1A abnormality had more alterations/sample (median, 6 versus 4; p < 0.0001) and more frequent co-alterations in ≥1 gene in key oncogenic pathways: signal transduction, RAS/RAF/MAPK, PI3K/Akt/mTor, and the cell cycle. Taken together, our data suggest that liquid (blood) biopsies identify ARID1A alterations at a frequency similar to that found in primary tumor material. Furthermore, co-alterations in key pathways, some of which are pharmacologically tractable, occurred more frequently in samples with functional (deleterious) ARID1A alterations than in those without such aberrations, which may inform therapeutic strategies.

9.
Ther Adv Med Oncol ; 14: 17588359221112696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923926

RESUMO

Background: Liquid biopsy (LB) can detect actionable genomic alterations in plasma circulating tumor circulating tumor DNA beyond tissue testing (TT) alone in advanced non-small cell lung cancer (NSCLC) patients. We estimated the cost-effectiveness of adding LB to TT in the Canadian healthcare system. Methods: A cost-effectiveness analysis was conducted using a decision analytic Markov model from the Canadian public payer (Ontario) perspective and a 2-year time horizon in patients with treatment-naïve stage IV non-squamous NSCLC and ⩽10 pack-year smoking history. LB was performed using the comprehensive genomic profiling Guardant360™ assay. Standard of care TT for each participating institution was performed. Costs and outcomes of molecular testing by LB + TT were compared to TT alone. Transition probabilities were calculated from the VALUE trial (NCT03576937). Sensitivity analyses were undertaken to assess uncertainty in the model. Results: Use of LB + TT identified actionable alterations in more patients, 68.5 versus 52.7% with TT alone. Use of the LB + TT strategy resulted in an incremental cost savings of $3065 CAD per patient (95% CI, 2195-3945) and a gain in quality-adjusted life-years of 0.02 (95% CI, 0.01-0.02) versus TT alone. More patients received chemo-immunotherapy based on TT with higher overall costs, whereas more patients received targeted therapy based on LB + TT with net cost savings. Major drivers of cost-effectiveness were drug acquisition costs and prevalence of actionable alterations. Conclusion: The addition of LB to TT as initial molecular testing of clinically selected patients with advanced NSCLC did not increase system costs and led to more patients receiving appropriate targeted therapy.

10.
Nat Cancer ; 3(6): 710-722, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35726063

RESUMO

Lorlatinib is currently the most advanced, potent and selective anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor for the treatment of ALK-positive non-small cell lung cancer in the clinic; however, diverse compound ALK mutations driving therapy resistance emerge. Here, we determine the spectrum of lorlatinib-resistant compound ALK mutations in patients, following treatment with lorlatinib, the majority of which involve ALK G1202R or I1171N/S/T. We further identify structurally diverse lorlatinib analogs that harbor differential selective profiles against G1202R versus I1171N/S/T compound ALK mutations. Structural analysis revealed increased potency against compound mutations through improved inhibition of either G1202R or I1171N/S/T mutant kinases. Overall, we propose a classification of heterogenous ALK compound mutations enabling the development of distinct therapeutic strategies for precision targeting following sequential tyrosine kinase inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aminopiridinas , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Lactamas , Lactamas Macrocíclicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Pirazóis
11.
Transl Lung Cancer Res ; 11(1): 111-116, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35242632

RESUMO

Molecular characterization of non-small cell lung cancer (NSCLC) has led to marked improvements in the treatment of patients with advanced disease who harbor driver mutations, including those with alterations in the RET proto-oncogene. Liquid biopsy to detect circulating tumor DNA (ctDNA) is a clinically validated tool to identify genomic alterations in advanced NSCLC at diagnosis and disease progression. Whether ctDNA assessment can be integrated into other aspects of patient care is an area of ongoing active research. Here, we present the case of a 65-year-old female with KIF5B-RET fusion-positive advanced NSCLC who underwent on-therapy ctDNA surveillance while being treated on a phase 1b trial with the oral RET inhibitor RXDX-105. The patient initially presented with right-sided flank discomfort, with a CT scan identifying a large right lower lobe (RLL) lung mass and right-sided pleural effusion. CT-guided biopsy confirmed thyroid transcription factor 1 (TTF-1) positive lung adenocarcinoma. Subsequent video-assisted thoracoscopic surgery to assess resectability identified pleural studding, with pleural biopsy confirming advanced unresectable disease. Next-generation sequencing (NGS) of tumor tissue and peripheral blood confirmed the presence of a KIF5B-RET fusion, prompting initiation of trial therapy RXDX-105. After 1 year on therapy, ctDNA became detectable prompting early scans which identified disease progression. The patient was subsequently enrolled onto a phase II trial of the RET inhibitor pralsetinib, on which she continues to this day (2+ years) without detectable KIF5B-RET ctDNA and with an ongoing minor response [stable disease per response evaluation criteria in solid tumors (RECIST) v1.1] on imaging. This case illustrates a potential role for on-therapy ctDNA monitoring as a non-invasive method to evaluate treatment response and detect early relapse in patients with advanced NSCLC. Prospective investigation is required to clearly define the optimal integration of ctDNA testing into on-treatment surveillance in patients with advanced NSCLC.

12.
Nature ; 603(7900): 335-342, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236983

RESUMO

RAS family members are the most frequently mutated oncogenes in human cancers. Although KRAS(G12C)-specific inhibitors show clinical activity in patients with cancer1-3, there are no direct inhibitors of NRAS, HRAS or non-G12C KRAS variants. Here we uncover the requirement of the silent KRASG60G mutation for cells to produce a functional KRAS(Q61K). In the absence of this G60G mutation in KRASQ61K, a cryptic splice donor site is formed, promoting alternative splicing and premature protein termination. A G60G silent mutation eliminates the splice donor site, yielding a functional KRAS(Q61K) variant. We detected a concordance of KRASQ61K and a G60G/A59A silent mutation in three independent pan-cancer cohorts. The region around RAS Q61 is enriched in exonic splicing enhancer (ESE) motifs and we designed mutant-specific oligonucleotides to interfere with ESE-mediated splicing, rendering the RAS(Q61) protein non-functional in a mutant-selective manner. The induction of aberrant splicing by antisense oligonucleotides demonstrated therapeutic effects in vitro and in vivo. By studying the splicing necessary for a functional KRAS(Q61K), we uncover a mutant-selective treatment strategy for RASQ61 cancer and expose a mutant-specific vulnerability, which could potentially be exploited for therapy in other genetic contexts.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Mutação Silenciosa , Processamento Alternativo/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Oncogenes/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Sítios de Splice de RNA/genética
13.
Br J Cancer ; 126(3): 514-520, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34480094

RESUMO

BACKGROUND: Activating fusions of the NTRK1, NTRK2 and NTRK3 genes are drivers of carcinogenesis and proliferation across a broad range of tumour types in both adult and paediatric patients. Recently, the FDA granted tumour-agnostic approvals of TRK inhibitors, larotrectinib and entrectinib, based on significant and durable responses in multiple primary tumour types. Unfortunately, testing rates in clinical practice remain quite low. Adding plasma next-generation sequencing of circulating tumour DNA (ctDNA) to tissue-based testing increases the detection rate of oncogenic drivers and demonstrates high concordance with tissue genotyping. However, the clinical potential of ctDNA analysis to identify NTRK fusion-positive tumours has been largely unexplored. METHODS: We retrospectively reviewed a ctDNA database in advanced stage solid tumours for NTRK1 fusions. RESULTS: NTRK1 fusion events, with nine unique fusion partners, were identified in 37 patients. Of the cases for which clinical data were available, 44% had tissue testing for NTRK1 fusions; the NTRK1 fusion detected by ctDNA was confirmed in tissue in 88% of cases. Here, we report for the first time that minimally-invasive plasma NGS can detect NTRK fusions with a high positive predictive value. CONCLUSION: Plasma ctDNA represents a rapid, non-invasive screening method for this rare genomic target that may improve identification of patients who can benefit from TRK-targeted therapy and potentially identify subsequent on- and off-target resistance mechanisms.


Assuntos
Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/patologia , Proteínas de Fusão Oncogênica , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Receptor trkA/genética , Benzamidas/uso terapêutico , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Indazóis/uso terapêutico , Estadiamento de Neoplasias , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Proteínas Quinases/uso terapêutico
14.
Clin Cancer Res ; 27(17): 4807-4813, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34130999

RESUMO

PURPOSE: The role of circulating cell-free tumor DNA (ctDNA) as an adjunct to tissue genomic profiling is poorly defined in metastatic renal cell carcinoma (mRCC). In this study, we aim to validate previous findings related to genomic alteration (GA) frequency in ctDNA and determine the concordance between ctDNA and tissue-based profiling in patients with mRCC. EXPERIMENTAL DESIGN: Results of 839 patients with mRCC who had ctDNA assessment with a Clinical Laboratory Improvement Amendments (CLIA)-certified ctDNA assay between November 2016 and December 2019 were collected. Tissue-based genomic profiling was collected when available and concordance analysis between blood- and tissue-based testing was performed. RESULTS: ctDNA was assessed in 839 patients (comprising 920 samples) with mRCC. GAs were detected in 661 samples (71.8%). Tissue-based GAs were assessed in 112 patients. Limiting our analyses to a common 73-/74-gene set and excluding samples with no ctDNA detected, a total of 228 mutations were found in tissue and blood. Mutations identified in tissue (34.7%; 42/121) were also identified via ctDNA, whereas 28.2% (42/149) of the mutations identified in liquid were also identified via tissue. Concordance between ctDNA and tissue-based profiling was inversely related to the time elapsed between these assays. CONCLUSIONS: This study confirms the feasibility of ctDNA profiling in the largest mRCC cohort to date, with ctDNA identifying multiple actionable alterations. It also demonstrates that ctDNA and tissue-based genomic profiling are complementary, with both platforms identifying unique alterations, and confirms that the frequency of unique alterations increases with greater temporal separation between tests.


Assuntos
Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/genética , DNA Tumoral Circulante/sangue , Neoplasias Renais/sangue , Neoplasias Renais/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/secundário , Feminino , Genoma , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-34095713

RESUMO

Although the majority of patients with metastatic non-small-cell lung cancer (mNSCLC) lacking a detectable targetable mutation will receive pembrolizumab-based therapy in the frontline setting, predicting which patients will experience a durable clinical benefit (DCB) remains challenging. MATERIALS AND METHODS: Patients with mNSCLC receiving pembrolizumab monotherapy or in combination with chemotherapy underwent a 74-gene next-generation sequencing panel on blood samples obtained at baseline and at 9 weeks. The change in circulating tumor DNA levels on-therapy (molecular response) was quantified using a ratio calculation with response defined by a > 50% decrease in mean variant allele fraction. Patient response was assessed using RECIST 1.1; DCB was defined as complete or partial response or stable disease that lasted > 6 months. Progression-free survival and overall survival were recorded. RESULTS: Among 67 patients, 51 (76.1%) had > 1 variant detected at a variant allele fraction > 0.3% and thus were eligible for calculation of molecular response from paired baseline and 9-week samples. Molecular response values were significantly lower in patients with an objective radiologic response (log mean 1.25% v 27.7%, P < .001). Patients achieving a DCB had significantly lower molecular response values compared to patients with no durable benefit (log mean 3.5% v 49.4%, P < .001). Molecular responders had significantly longer progression-free survival (hazard ratio, 0.25; 95% CI, 0.13 to 0.50) and overall survival (hazard ratio, 0.27; 95% CI, 0.12 to 0.64) compared with molecular nonresponders. CONCLUSION: Molecular response assessment using circulating tumor DNA may serve as a noninvasive, on-therapy predictor of response to pembrolizumab-based therapy in addition to standard of care imaging in mNSCLC. This strategy requires validation in independent prospective studies.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Intervalo Livre de Progressão , Taxa de Sobrevida , Resultado do Tratamento
16.
Oncologist ; 26(10): 818-824, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34176200

RESUMO

Enhanced understanding of the molecular events underlying oncogenesis has led to the development of "tumor-agnostic" treatment strategies, which aim to target a tumor's genomic profile regardless of its anatomic site of origin. A classic example is the translocation resulting in an ETV6-NTRK3 gene fusion, a characteristic driver of a histologically diverse array of cancers. The chimeric ETV6-NTRK3 fusion protein elicits constitutive activation of the tropomyosin receptor kinase (TRK) C protein, leading to increased cell survival, growth, and proliferation. Two TRK inhibitors, larotrectinib and entrectinib, are currently approved for use in the metastatic setting for the treatment of advanced solid tumors harboring NTRK fusions. Here we report a rare case of recurrent secretory carcinoma of the breast (SCB) with NTRK3 gene fusion. Whereas most cases of SCB represent slow-growing tumors with favorable outcomes, the case detailed here is the first to the authors' knowledge of recurrence within 1 year of surgery. We review the molecular findings and potential clinical significance. KEY POINTS: The translocation resulting in the ETV6-NTRK3 gene fusion is a known oncogenic driver characteristic of secretory carcinoma of the breast (SCB). Whereas most cases of SCB represent slow-growing tumors with favorable outcomes, the case here with ETV6-NTRK3 gene fusion had local recurrence within 1 year of surgery. Two tropomyosin receptor kinase (TRK) inhibitors, larotrectinib and entrectinib, are approved to treat NTRK fusion-positive tumors, demonstrating sustained high overall response rates in the metastatic setting. Approval of TRK inhibitors necessitates optimization of NTRK fusion detection assays, including detection with liquid biopsies.


Assuntos
Neoplasias da Mama , Carcinoma , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Fusão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Receptores Proteína Tirosina Quinases
18.
Ther Adv Med Oncol ; 13: 17588359211006962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868464

RESUMO

The oral poly(adenosine diphosphate-ribose) polymerase inhibitor olaparib is approved for the treatment of patients with human epidermal growth factor 2-negative (HER2-) metastatic breast cancer (mBC) and a germline breast cancer susceptibility gene (BRCA) mutation who have been treated with chemotherapy. This case report describes a 63-year-old postmenopausal woman with somatic BRCA2-mutated mBC who responded to olaparib treatment following multiple prior lines of therapy. The patient presented in January 2012 with locally advanced, hormone receptor-positive (HR+), HER2- BC which, despite initial response to neoadjuvant chemotherapy, recurred as bone disease in February 2014, and subsequently skin (June 2016) and liver (October 2016) metastases. A comprehensive 592-gene next-generation sequencing panel (Caris Life Sciences), performed on a skin biopsy, detected a pathogenic frameshift mutation in BRCA2 (H3154fs, c.9460delC), which was not identified in a 28-gene hereditary cancer germline analysis (Myriad Genetics, Inc.), and was therefore considered to be a somatic mutation. In January 2017, cell-free DNA (cfDNA) analysis (Guardant Health, Inc.) confirmed the BRCA2 H3154fs mutation in plasma. After several lines of chemotherapy and endocrine therapy, deriving clinical benefit from eribulin and capecitabine, the disease progressed by October 2017, and olaparib (300 mg orally twice daily) was initiated in January 2018. By April 2018, the liver lesions had shrunk by 80% and a >90% response in multiple skin lesions was noted. Clinical response was maintained for 8 months, followed by progression in the skin in September 2018. Biopsy of recurrent lesions revealed a novel BRCA2 mutation, E3152del (c.9455_9457delAGG), predicted to restore the open reading frame and presumably the mechanism of resistance to olaparib. Further likely resistance mutations were noted in subsequent cfDNA analyses. This case demonstrated a clinical response with olaparib as a later-line therapy for HR+, HER2- mBC with a somatic BRCA2 mutation.

19.
Cancer Discov ; 11(8): 1913-1922, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33824136

RESUMO

Mutant-selective KRASG12C inhibitors, such as MRTX849 (adagrasib) and AMG 510 (sotorasib), have demonstrated efficacy in KRAS G12C-mutant cancers, including non-small cell lung cancer (NSCLC). However, mechanisms underlying clinical acquired resistance to KRASG12C inhibitors remain undetermined. To begin to define the mechanistic spectrum of acquired resistance, we describe a patient with KRAS G12C NSCLC who developed polyclonal acquired resistance to MRTX849 with the emergence of 10 heterogeneous resistance alterations in serial cell-free DNA spanning four genes (KRAS, NRAS, BRAF, MAP2K1), all of which converge to reactivate RAS-MAPK signaling. Notably, a novel KRAS Y96D mutation affecting the switch-II pocket, to which MRTX849 and other inactive-state inhibitors bind, was identified that interferes with key protein-drug interactions and confers resistance to these inhibitors in engineered and patient-derived KRAS G12C cancer models. Interestingly, a novel, functionally distinct tricomplex KRASG12C active-state inhibitor RM-018 retained the ability to bind and inhibit KRASG12C/Y96D and could overcome resistance. SIGNIFICANCE: In one of the first reports of clinical acquired resistance to KRASG12C inhibitors, our data suggest polyclonal RAS-MAPK reactivation as a central resistance mechanism. We also identify a novel KRAS switch-II pocket mutation that impairs binding and drives resistance to inactive-state inhibitors but is surmountable by a functionally distinct KRASG12C inhibitor.See related commentary by Pinnelli and Trusolino, p. 1874.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Acetonitrilas/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...